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This paper investigates nonlinear responses of a ®ooded ship in regular waves. In
previous experimental work, we found that the roll motion of a ®ooded ship can
exhibit complicated irregular behaviour even in waves of a moderate height. First,
we analyse the fractal dimension and the Lyapunov exponents of the experimental
data and show that they have chaotic characteristics. We also show that a radial
basis function network obtained directly from the data can reproduce a geometrical
structure of the reconstructed attractor and provide good short-term prediction on
the dynamical motion. Next, in order to understand this nonlinear phenomenon, we
derive a simple mathematical model for the nonlinearly coupled motion of roll and
®ooded water in regular waves. This model has a form of coupled Du¯ ng’s equations
with a bistable restoring term and a nonlinear inertial coe¯ cient matrix. We obtain
bifurcation diagrams of periodic solutions of this model and examine the intricate
structure of this nonlinear system. Chaotic responses are found in wide regions of the
parameter space, even if the wave-exciting moment is not large. Furthermore, the
attractor structure of the chaotic solution is similar to that of the measured chaotic
motion in the experiments. The results suggest that bifurcation analyses in this work
help us understand the complex dynamics of nonlinear motion of a ®ooded ship in
waves.

Keywords: nonlinear roll motion; ° ooded ship; bifurcation; chaos;
nonlinear time-series analysis; coupled Du± ng’s equations

1. Introduction

A ship in waves can exhibit nonlinear responses which may lead to undesirable
motion, including capsizing. Thus this problem has been one of the important sub-
jects in the  eld of naval architecture. We can regard ship motion in regular waves
as motion of a rigid body with periodic forcing. In general, a restoring moment of
a ship in the direction of roll is nonlinear with respect to the roll angle ¿ , and the
nonlinearity can cause complex roll responses in waves. This paper focuses on non-
linear roll motion of a ®ooded ship in waves. It is well known that ®ooded water has
some critical e¬ects on ship motion in waves, but dynamical stability of a ®ooded
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ship in waves has not been made clear yet. In previous work (Murashige & Aihara
1998a,b; Murashige et al . 1999), we indicated the possibility that nonlinearly coupled
dynamics of roll and ®ooded water is the key to understanding this problem.

A lot of nonlinearly coupled systems exist in the wide range of science and engineer-
ing  elds; for example, mechanical vibrations (Nayfeh & Mook 1979; Moon 1992),
®uid motion (Miles & Henderson 1990), electrical circuits (Yoshinaga & Kawakami
1989), neural systems (Skarda & Freeman 1987), and so on. It is not easy to elucidate
the intricate mechanism of these systems, but application of the dynamical system
theory is one of a number of promising approaches. The basic idea of this approach
is to qualitatively catch essential features of dynamical systems in a state space.
Nonlinear dynamical systems with periodic forcing can show various types of phe-
nomena; for example, coexistence of several periodic responses which are correlated
with jump and hysteresis behaviours, nonlinear resonances, quasi-periodic responses,
chaotic responses, etc. Qualitative change of a phase portrait with variation of val-
ues of system parameters in a dynamical system is referred to as a bifurcation. Thus
bifurcation analyses are required as a  rst step of nonlinear system analyses. The
codimension-one bifurcations of periodic responses are classi ed into three types: the
saddle-node, the period-doubling and the Neimark{Sacker bifurcations, which corre-
spond to generation of a pair of stable and unstable periodic responses, branching
of a periodic response with a doubled period, and appearance of a quasi-periodic
response, respectively. Kawakami (1984) presented the numerical method to obtain
a set of the codimension-one bifurcations. This method can also be applied to the
codimension-two bifurcations which, in general, occur under coexistence of two di¬er-
ent kinds of bifurcation conditions. Yoshinaga & Kawakami (1989) pointed out that
the codimension-two bifurcation is deeply related to generation of chaotic responses
in a coupled system.

Many researchers have considered nonlinear ship motion in waves (for example,
Paulling & Rosenberg 1959; Nayfeh et al . 1973; Wright & Marsh eld 1980; Virgin
1987; Nayfeh 1988; Kan & Taguchi 1990; Rainey & Thompson 1991; Soliman &
Thompson 1991; Thompson et al . 1992; MacMaster & Thompson 1994). Thompson
gave a comprehensive review in this  eld (Thompson 1997). There are also some
works on motion of a ®ooded ship in waves (Dillingham 1981; Falzarano et al . 1992;
Thompson & de Souza 1996). Some of these works investigated this problem from
the viewpoint of nonlinear dynamics, using mathematical models for ship motion in
waves. On the other hand, we consider that not only theoretical, but also experimen-
tal, works are indispensable, because it is hard to get an exact mathematical model
for this complex problem. In addition, since the conventional linear time-series anal-
yses are not suitable for chaotic data, experimental works require careful treatments
for nonlinear time-series.

We performed experiments using a ferry model (the length between perpendiculars
was 4.3 m, with a scale ratio of 1:23.5) in a wave tank of 8 m wide, 50 m long and
4.5 m deep, and measured the roll angle ¿ of a ®ooded ship in regular beam waves
(Murashige & Aihara 1998b). Then it was found that a coupled system of roll and
®ooded water in waves can exhibit nonlinear responses even in waves of a relatively
moderate height. For example, two completely di¬erent motions coexist under the
same wave conditions, and the reconstructed attractor of one of them looked like a
chaotic one. In addition, in order to examine this system in more detail, we conducted
some simpli ed two-dimensional experiments using a box-shaped model (scale ratio
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Figure 1. Time-series data of the measured roll angle ¿ (t) in the experiment with the
box-shaped model (X(t)=¿ (t), X measured in degrees).
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Figure 2. Phase portrait of a possible attractor reconstructed from the experimental data of
the box-shaped model. The values of the reconstruction dimension and the lag are 4 and 7,
respectively ((X(t); X(t + ½ ); X(t + 2 ½ )) = ( ¿ (t); ¿ (t + ½ ); ¿ (t + 2½ )), X measured in degrees).

of 1:35.6) in the same wave tank as the ferry model, and measured the roll angle
in regular waves. This model without ®ooded water showed only regular motion
with the same period as the waves, but the ®ooded model demonstrated complicated
bifurcation phenomena. The irregular motion found in the experiments was chaotic
in the sense that the stroboscopic plots show the stretching, folding and compressing
process, and that the maximum Lyapunov exponent is positive. It should be noted
that chaotic motion was found in wide regions of a parameter space. From observa-
tions of these experiments, we conjectured that coupling of roll and ®ooded water
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is dominant in this system, and that free surface motion of ®ooded water might not
be critical. These results lead to some assumptions for the mathematical model of
this problem (Murashige et al . 1999). In this model, we assumed that the surface
of ®ooded water is ®at but not horizontal, and that motion of ®ooded water can be
represented by the inclination of the surface À . Then the mathematical model was
expressed as ordinary di¬erential equations with respect to the roll angle ¿ and À . We
numerically obtained some bifurcation sets of periodic solutions of this model, and
considered the relation between bifurcation and nonlinear resonances. The results
qualitatively agreed with the experimental results.

This paper shows nonlinear time-series analyses of the experimental data in more
detail than previous work (Murashige & Aihara 1998b), and bifurcation analyses
using a simpli ed mathematical model to investigate the generation of chaotic re-
sponses found in the experiments. Section 2 shows the fractal dimension and the
Lyapunov exponents of the experimental data, and demonstrates nonlinear modelling
and prediction of the chaotic response by the radial basis function (RBF) network.
Section 3 shows some characteristics of the nonlinearly coupled system of roll and
®ooded water in waves, and derives a new mathematical model for such complex
forced chaos. Section 4 represents some results of bifurcation analyses using this
model, and discusses chaotic responses. Finally, x 5 concludes this paper.

2. Nonlinear time-series analyses of the experimental data

In this section, we analyse experimental data observed from a box-shaped model
(Murashige & Aihara 1998b), from a viewpoint of nonlinear time-series analyses
(Parker & Chua 1989; Ott et al . 1994; Abarbanel 1996; Kantz & Schreiber 1997).
In the nonlinear time-series analyses, techniques such as estimation of the fractal
dimension and the Lyapunov spectrum and time-series forecasting with deterministic
nonlinear modelling are widely used to characterize the nonlinear dynamics of a
system and detect possible deterministic chaos only from observed data, without any
a priori knowledge of the system. Although all state variables of a nonlinear system
cannot usually be observed and one can often obtain just only one set of scalar
time-series data, embedding theory (Takens 1981; Sauer et al . 1991) guarantees that
a single time-series is generic or prevalent enough to reconstruct an attractor of
the objective system if the reconstruction dimension with delay coordinates is large
enough. In this section, we analyse time-series data on roll motion of the box-shaped
model in order to elucidate underlying possibly chaotic dynamics. In particular, we
calculate the correlation dimension and the Lyapunov spectrum of the measured
time-series data, and construct a nonlinear deterministic model from which the free-
run attractor can reproduce the geometrical structure of the reconstructed attractor.
These results suggest that the experimental data of the box-shaped model are chaotic,
probably caused by the nonlinear dynamics of the ®ooded ship in waves.

(a) Methods of nonlinear time-series analyses

To estimate the fractal dimension, the Grassberger{Procaccia method with cor-
relation function (Grassberger & Procaccia 1983a,b) has been widely used in the
past, but it is now well known that this method has some subtle problems (Parker &
Chua 1989; Ruelle 1990; Abarbanel 1996; Kantz & Schreiber 1997). Thus we adopt
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an improved dimension estimator proposed by Judd (1992, 1994). In this method,
it is assumed that a local structure of a strange attractor can be generally modelled
as a Cartesian product of a Cantor-like set and a bounded and connected subset of
a smooth manifold. Under this assumption, the correlation dimension is estimated
on the basis of the maximum-likelihood method with a change in the cut-o¬ value
r0 marking the scale at which relevant scaling information on the dimension begins
(Judd 1992).

The Lyapunov spectrum composed of the Lyapunov exponents is an important
indicator in characterizing deterministic chaos in relation to orbital instability. Eck-
mann & Ruelle (1985) and Sano & Sawada (1985) proposed a method to estimate
Jacobian matrices from the time-series data. Here we adopt this method and combine
it with a numerical procedure by Shimada & Nagashima (1979) to estimate the Lya-
punov spectrum f¶ 1; ¶ 2; : : : ; ¶ k; ¶ i ¶ i+ 1; k is the reconstruction dimensiong from
the observed time-series data. In addition, we can obtain the Lyapunov dimension
DL de ned by

DL = j +

j

i= 1

¶ i=j ¶ j + 1j;

where j is the largest integer such that

j

i= 1

¶ i 0:

If we can predict the short-term future of a system with a deterministic model,
it implies that the system behaves according to such deterministic dynamics, even
though its behaviour appears to be very erratic (Farmer & Sidorowich 1987; Cas-
dagli 1989; Sugihara & May 1990). We use the RBF network (Casdagli 1989; Smith
1993) as the nonlinear modelling method approximating the dynamics underlying the
time-series data. Here we adopt the Gaussian function g(x) = exp( ¡ Bx2), with the
coe¯ cient B as the radial basis function and the smoothing-RBI (radial basis inter-
polation) method (Suzuki et al . 1993), which is available for noisy data by adjusting
a trade-o¬ parameter between  tting accuracy and smoothness.

(b) Results of nonlinear time-series analyses

In this subsection, we analyse the experimental data of the box-shaped model
shown in  gure 1. In the analysis, we use delay coordinates

X(t) = X(t); X(t + ½ ); : : : ; X(t + (n ¡ 1) ½ )

of the time-series data fX(t)g with the reconstruction dimension n and the lag ½ ,
where the discrete-time series of fX(t)g corresponds to that of the roll angle ¿ (t)
measured from the box-shaped model with the sampling time of 0.05 s. Figure 2
demonstrates a reconstructed attractor with n = 4 and ½ = 7, where ½ = 7 corre-
sponds to 0:05 £ 7 s.

Figure 3 shows estimated dimensions of the experimental data reconstructed with
n = 3, 4, 5, 7, 10 and 14, and ½ = 7. The result shows that the estimated correlation
dimension is between 2.24 and 2.27 at relevant small cut-o¬ values.
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Figure 3. Estimated dimensions of the experimental data reconstructed with
n = 3, 4, 5, 7, 10 and 14, and ½ = 7.
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Figure 4. The estimated Lyapunov spectrum of the experimental data reconstructed with n = 4
and ½ = 7. The number of neighbours to be used for estimation of the Jacobian matrices is 35.
The converged values of Lyapunov exponents are 0.0118, 0:000 378, ¡0:0580 and ¡0:205. The
estimated Lyapunov dimension is 2.20.

Figure 4 shows the estimated Lyapunov spectrum of the data reconstructed with
n = 4 and ½ = 7. The result shows that the experimental data have a positive largest
Lyapunov exponent and the Lyapunov dimension DL is estimated to be about 2.20.
In addition, other calculations with 20 to 70 neighbours provide the similar positive
Lyapunov exponents and the Lyapunov dimension between 2.2 and 2.3.

Figure 5 shows a free-run attractor of the nonlinear model of the RBF network
model derived from the experimental data reconstructed with n = 4 and ½ = 7.
The result shows that the attractor obtained by making the dynamical system of
the RBF network run freely from the initial condition corresponding to the last
state of the input dataset is quite similar to the original reconstructed attractor
shown in  gure 2. Figure 6 shows the relative root mean square error (RRMSE) of
the prediction calculated by the RBF network. The result suggests that this RBF
model is an appropriate predictor for forecasting the behaviour of the system in
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Figure 5. A free-run attractor of a nonlinear model of the RBF network derived from the
experimental data reconstructed with n = 4 and ½ = 7. The number of training data is 1000.
The number of iterations of free running is 3000. The number of bases for the RBF network
is 200. We set the value of the trade-o® parameter to be 0.01 (X measured in degrees).

the short-term future of about 200 steps, and the prediction error shows a chaotic
characteristic with short-term predictability and long-term unpredictability based
upon the deterministic model. Figure 7 shows the Lyapunov spectrum calculated
with the Jacobian matrix of the RBF network. This result shows that the free-run
attractor is chaotic, with a positive largest Lyapunov exponent similar to that of
 gure 4. The Lyapunov dimension of 2.16 is also satisfactorily close both to the
estimated Lyapunov dimension of 2.20 in  gure 4 and to the estimated correlation
dimensions of 2.24{2.27 in  gure 3.

All the results of the nonlinear time-series analyses suggest that the experimental
data of the box-shaped model are typically chaotic; this is possibly caused by the
underlying nonlinear dynamics of the system of the ®ooded ship forced by waves.

3. Mathematical model

In a previous paper (Murashige et al . 1999), we derived a mathematical model for
nonlinearly coupled motion of roll and ®ooded water in regular waves. This model
produced nonlinear roll responses which qualitatively agreed with the experimen-
tal results. But we had some di¯ culties for bifurcation analyses due to arti cially
introduced assumptions in the model. This section summarizes the basic ideas to
derive the original mathematical model in x 3 a and derives a new model in x 3 b
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Figure 6. The relative root mean square error (RRMSE) of the prediction by the RBF network
with the same condition as in ¯gure 5.
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Figure 7. The Lyapunov spectrum of the nonlinear model. The converged values of the Lyapunov
exponents are 0:0123, 0:004 85, ¡0:109 and ¡0:405. The calculated Lyapunov dimension is 2:16.

which maintains the essential properties of the original model but is more suitable
for bifurcation analyses.

(a) Modelling of nonlinearly coupled motion of ship roll and ° ooded water in waves

In order to investigate the nonlinear phenomena found in the experiments, we
consider the two-dimensional motion of a box-shaped ship with ®ooded water in the
vertical cross-section parallel to the progressing direction of regular waves, as shown
in  gure 8. In previous work (Murashige et al . 1999), we obtained a mathematical
model for the coupled motion of roll and ®ooded water in regular waves, based on
the following  ve assumptions.

(i) Coupling of roll motion and ®ooded water is dominant, and sway and heave
modes can be neglected.

(ii) The surface of ®ooded water is ®at with slope À (or ³ ).

(iii) The motion of ®ooded water can be approximated by that of a material particle
located at the centre of gravity Gw.

(iv) The wave-forcing moment varies sinusoidally with the same angular frequency
« as the incident waves.

Phil. Trans. R. Soc. Lond. A (2000)



Nonlinear analyses of roll motion of a ° ooded ship in waves 1801

Gs

Bs

Gw
x

y

x

h
Water

incident waves
water

qc

f

h

x
d s

d w
bs

bw

f r

Bs

Gs

Gw
x

y

Figure 8. Illustration of the simpli¯ed motion of a ° ooded ship in waves. Here, ¿ denotes the
roll angle of a ship, À the slope of the surface of ° ooded water, bs the breadth of a ship, bw the
breadth of an inside area of a ship, ds the draft, fr the freeboard, dw the depth of ° ooded water,
Gs the centre of gravity of a ship, Gw the centre of gravity of ° ooded water, and Bs the centre
of buoyancy of a ship.

(v) The damping moments on the ship and the ®ooded water vary linearly with _¿
and _À (where the dot denotes di¬erentiation with respect to t), respectively.

In this model, the kinetic energy K, the potential energy P and the rate of energy
dissipation D of this coupled system are expressed as

K s = 1
2

_¿ 2; Kw = 1
2
» ( _x2

Gw
+ _y2

Gw
);

P s = ¡ (1 + » ) ¼ 2yBs
; Pw = » ¼ 2yGw

; Pf = ¡ ¿ fA0 + A1 sin( « t + Á)g;

D = 1
2
¸ s

_¿ 2 + 1
2
¸ w _À 2;

(3.1)

where mass and length are normalized by the mass of the ship M and the radius of
gyration µ, x and y denote the horizontal and vertical coordinates, with the origin
set at the centre of gravity of the ship G s as shown in  gure 8. The subscripts s, w
and f denote the ship, the ®ooded water and the wave-forcing moment, respectively,
» =m=M , where m is the mass of the ®ooded water, ¼ = g=µ, where g is the
gravitational acceleration, xGw

= (xGw
; yGw

) is the location of the centre of gravity
Gw of the ®ooded water, xBs

= (xBs
; yBs

) is the location of the centre of buoyancy
B s of the ship, A0 + A1 sin( « t + Á) is the wave-forcing moment, and ¸ the damping
coe¯ cient. Note that the time t is not normalized.

The dissipation in this system is mainly due to the viscous e¬ects. The roll motion
of the ship is also subjected to the wave-making damping. The coe¯ cients ¸ s and
¸ w can be experimentally estimated by free damping tests in still water, with and
without ®ooded water inside a ship.

Although we do not aim at quantitative comparison between this mathematical
model and the experimental results, it is important to see the practical range of values
of the amplitude of the wave-exciting moment A1 and the constant heel moment
A0. The wave-exciting moment is often expressed as ~A1 = MgGM± £ w, where GM
denotes the metacentric height above the centre of gravity of the ship, ± (ca. 0.7{0.8)
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the e¬ective wave slope, and £ w the wave slope. Thus A1 = ~A1=(Mµ2) roughly
ranges from 0 to 1.5 s¡2 in the experimental scale, and from 0 to 0.05 s¡2 in a real
ship scale. The constant heel moment A0 is due to the steady loading such as the
viscous resistance, the wave drift force, the wind force, shift of cargo and vehicles,
and so on. Since it is hard to experimentally estimate all of them, the value of A0

in the numerical calculation in x 4 was set so that the constant heel angle ¿ 0 was
increased by 0{5¯.

Substitution of K = K s + Kw, P = P s + Pw + Pf and D into Lagrange’s equations
of motion with the Lagrangian L = K ¡ P produces a mathematical model for
the coupled motion. We can geometrically determine yBs

(¿ ) and xGw
( ¿ ; À ) in (3.1)

(Murashige & Aihara 1998b). Here, xGw
( ¿ ; À ) can be written in the form

xGw
=

xG(¿ ; À )
yG( ¿ ; À )

=
cos ¿ sin ¿

¡ sin ¿ cos ¿
¹ G( À )
² G( À )

: (3.2)

The kinetic energy of ®ooded water Kw can be expressed as

Kw = 1
2
» fq1( À ) _¿ 2 + 2q2( À ) _¿ _À + q3( À ) _À 2g; (3.3)

where q1, q2 and q3 are given by

q1( À ) = ¹ G
2 + ² G

2;

q2( À ) =
@¹ G

@À
² G ¡ ¹ G

@² G

@À
;

q3( À ) =
@¹ G

@À

2

+
@² G

@À

2

:

(3.4)

The equations of motion can be written in the form

M0
�©0 + N0

_©0 + h0 + r0 = f ; (3.5)

where ©0 = ( ¿ ; À )T, T denotes the transpose and

M0 =
1 + » q1 » q2

» q2 » q3
;

N0 =
¸ s 0
0 ¸ w

;

h0 =

»
@q1

@À
_¿ _À +

@q2

@À
_À 2

1
2
» ¡ @q1

@À
_¿ 2 +

@q3

@À
_À 2

;

r0 = ¼ 2

¡ (1 + » )
@yB

@¿
¡ » ( ¹ G cos ¿ + ² G sin ¿ )

» ¡ @¹ G

@À
sin ¿ +

@² G

@À
cos ¿

;

f =
A0 + A1 sin( « t + Á)

0
:

(3.6)
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In addition, equation (3.5) can be rewritten in the form

du

dt
= F (t; u); (3.7)

where u = ( ¿ ; À ; _¿ ; _À )T and

F =
_©0

M0
¡1( ¡ N0

_©0 ¡ h0 ¡ r0 + f )
: (3.8)

(b) Characteristics of this nonlinearly coupled system

The vector  eld F in (3.7) has a complicated form and is piecewise nonlinear with
respect to u (Murashige et al . 1997). The piecewise nonlinearity is not a physically
required property, but an arti cially introduced one on the assumptions of this model
as follows. xBs

corresponds to the centre of the cross-section of the ship under the
still water surface, and, similarly, xGw

corresponds to the centre of the cross-section
of ®ooded water. Each sectional shape changes from a trapezoid to a triangle at
¿ = ¿ ¤ = tan¡1 2ds =b s and À = À ¤ = tan¡1 2dw=bw, respectively (see  gure 8).
Although the vector F in (3.7) is continuous with respect to ¿ and À , the Jacobian
matrix @F =@u and higher-order partial derivatives are discontinuous at ¿ = ¿ ¤

and À = À ¤ . This discontinuity can cause some troubles in numerically calculating
bifurcation sets of this model. In order to avoid these troubles, we try to derive a
simpli ed model with a smooth vector  eld, but without losing essential properties
of the original model.

(i) The potential energy P

The bistable condition characterizes the potential energy of this system, as we
previously indicated (Murashige & Aihara 1998b). Namely, there are three statically
equilibrium positions of which two are stable at ¿ = § ¿ e and one is unstable at the
horizontal position ¿ = 0. The simplest form for this condition may be given by

@P0

@¿
/ ¿ ( ¿ 2 ¡ ¿ e

2) at ¿ = À ; (3.9)

where P0 = P s + Pw (see (3.1)). In addition, we should note that, at a statically
balanced position, the surface of ®ooded water is horizontal ( À = ¿ ). This condition
can be expressed as

@P0

@À
/ ¿ ¡ À : (3.10)

For the sake of convenience, hereafter we use ³ for the inclination of the surface of
®ooded water in the spatially  xed coordinate system, instead of À in the body- xed
coordinate system (see  gure 8). One of the possible forms of the potential energy
P ( ¿ ; ³ ), which satis es the above two conditions, is

P1( ¿ ; ³ ) = ¼ 2f( ¬ 0 + ¬ 2 ¿ 2) ³ 2 + ® 2 ¿ 2 + ® 4 ¿ 4g; (3.11)

where ¬ 0, ¬ 2, ® 2 and ® 4 are constant. Figure 9 compares the contour plots of P0 and
P1 in the ( ¿ ; À )-plane.
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Figure 9. Comparison of the contour plots of the potential energy P0 and P1 in the
( ¿ ; À )-plane. P0 = Ps + Pw (see (3.1)). Unit: degree. Step value of contour: 0.05.

It should be noted that the potential energy of this model does not express
extremely large amplitude motion which may lead to capsizing. This is because we
only consider nonlinear responses found in the experiments where the wave height
was relatively moderate and capsizing was not found (Murashige & Aihara 1998b).

(ii) The kinetic energy K

The kinetic energy of ®ooded water Kw can be rewritten, using ³ , in the form

Kw( ¿ ; ³ ) = 1
2
» f(q1 + 2q2 + q3) _¿ 2 + 2(q2 + q3) _¿ _³ + q3

_³ 2g; (3.12)

and the main properties of this energy can be approximated by

Kw( ¿ ; ³ ) ’ K1( ¿ ; ³ ) = 1
2
» q0( ¿ ; ³ )( _¿ 2 + _³ 2): (3.13)

Here, q0( ¿ ; ³ ) is given by

q0( ¿ ; ³ ) =
c2

1 + c1( ¿ + ³ )2
; (3.14)

where c1 and c2 are constant.

(iii) A new model for motion of a ° ooded ship in waves

Substitution of the potential energy P = P1 and the kinetic energy K = K s + K1

into Lagrange’s equations of motion yields

M1
�©1 + N1

_©1 + h1 + r1 = f ; (3.15)
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where ©1 = ( ¿ ; ³ )T and

M1 =
1 + » q0 » q0

» q0 » q0
;

h1 = 1
2
»

@q0

@¿
( _¿ + _³ )2 1

1
;

N1 =
¸ ¿ 0
0 ¸ ³

;

r1 = ¼ 2 2¬ 2 ¿ ³ 2 + 2 ® 2 ¿ + 4 ® 4 ¿ 3

2( ¬ 0 + ¬ 2 ¿ 2) ³
:

(3.16)

Here it should be noted that the damping moments are assumed to vary linearly
with _¿ and _³ with the coe¯ cients ¸ ¿ and ¸ ³ , respectively.

This model can be classi ed into a type of coupled Du¯ ng’s equations. A repre-
sentative example of a coupled mechanical system which produces chaotic behaviour
is a double pendulum. Also, there are some similar coupled systems, such as roll and
heave of a ship in waves (Thompson & de Souza 1996). In comparison with these
other coupled systems, this model is unique in the sense that it includes both the
bistable restoring term and the nonlinear coe¯ cient matrix M1.

4. Bifurcation analyses

(a) Bifurcation diagrams of periodic responses

We can obtain bifurcation sets of periodic solutions of the model (3.15) using the peri-
odic condition, the bifurcation condition and Newton’s method (Kawakami 1984).
Figure 10a shows the two-parameter bifurcation diagrams of the period-1 and period-
2 solutions in the ( « ; A1)-plane when » = 0:1, A0 = 0, ¸ ¿ = 0:05 and ¸ ³ = 0:05.
In this condition, the constant heel angle ¿ 0 in a still water is equal to 15.4¯. Here,
the `period-N ’ solution denotes a solution of which the period is 2N º =« . The other
parameter values are closely set to those of the experiments using the box-shaped
model (Murashige & Aihara 1998b). Figures 10{14 are shown in the experimental
scale, and the frequency range corresponds to that of waves in real sea. Figure 10b
shows an enlarged diagram of  gure 10a near « = 5:0. This diagram is similar to
the result of the original model (3.5) (see  g. 5 in Murashige et al . 1999). In partic-
ular, the period-1 and -2 solutions coexist in a region ( « ; A1) = (4.0{5.0, 0.05{0.4)
surrounded by the bifurcation curves G2 (saddle-node), I2 (period-doubling) and
H2 (Neimark{Sacker). The experiments using the ferry model (Murashige & Aihara
1998b) were performed in this region and we found coexistence of the small-amplitude
period-1 and the large-amplitude period-2 responses. This result suggests that the
simpli ed model of (3.15) keeps the essential features of the experimental results and
the original model.

Figure 11a; b shows the bifurcation diagrams for A0 = 0:5 and 1.0, respectively,
with the values of the other parameters as in  gure 10. Note that the frequency
range in  gure 11 is not the same as in  gure 10. In these conditions, the constant
heel angles ¿ 0 are equal to 18.5¯ for A0 = 0:5, and 20.6¯ for A0 = 1:0, respec-
tively, when the ship is set in a statically balanced position in a still water, namely
A1 being set to zero. This bias term A0 is related to the symmetry of this system
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Figure 10. Two-parameter bifurcation diagrams in the ( « ; A1 )-plane ( » = 0:1, A0 = 0, ¸ ¿ = 0:05
and ¸ ³ = 0:05). The other parameter values are closely set to the experiments using the
box-shaped model. The wave-exciting moment A1 s ¡ 2 and the wave frequency « rad s ¡ 1 are
represented in the experimental scale. The point à’ in (b) denotes the codimension-two bifurca-
tion point at which the saddle-node and the period-doubling bifurcations occur (see ¯gure 14a).
Solid line: bifurcation curves of the period-1 solution. Dashed line: bifurcation curves of the
period-2 solution. GN (blue line): the saddle-node bifurcation. IN (red line): the period-doubling
bifurcation. HN (green line): the Neimark{Sacker bifurcation. N : the period N solution.

(Murashige et al . 1999). Bifurcation structures in  gures 10 and 11 are similar, but
the corresponding frequencies are di¬erent and the bifurcation curves move to the
right side in the ( « ; A1)-plane with increasing A0. This is because the resonance
frequencies of the coupled system subjected to the periodic wave-forcing increase
with A0 (Murashige et al . 1999). Near the resonance frequencies, the bifurcation
curves come down to the small value of A1, for example, « ’ 1:5, 3.2 and 6.5 in
 gure 11a, and « ’ 1:9, 3.8 and 7.7 in  gure 11b. In particular, we consider the
regions ( « ; A1) = (2.0{3.5, 0.0{0.6) in  gure 11a and ( « ; A1) = (2:5{4.0, 0.0{0.8) in
 gure 11b to be important from the viewpoint of not only mathematical interests,
but also engineering applications. This is because complicated bifurcation phenom-
ena occur even at small values of A1, and some of the chaotic solutions in these
regions are similar to the measured chaotic responses in the experiments, as shown
later in  gure 13. The chaotic solutions are found in the regions where A1 is larger
than that of the bifurcation curves I1 and H1 in  gure 11a and H1 in  gure 11b.
It should be noted that chaotic responses exist in wide regions of the parameter
space, even if the wave-exciting moment is not large, as found in the experiments.
Thus it may be possible to catch the mechanism of generation of complex nonlin-
ear responses observed in the experiments by further detailed bifurcation analyses
using this mathematical model. In the next section, we investigate one-parameter
bifurcation for A1 = 0:0{0.8 and «  xed to 3.5 in  gure 11b.

(b) Generation of chaotic responses

Figure 12 represents the one-parameter bifurcation diagram with a change in the
amplitude of the wave-exciting moment A1 for ( « ; A1) = (3.5, 0.0{0.8) in  gure 11b.
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Figure 11. Two-parameter bifurcation diagrams in the ( « ; A1 )-plane (» = 0:1, ¸ ¿ = 0:05 and
¸ ³ = 0:05). (a) A0 = 0:5. (b) A0 = 1:0. (See caption to ¯gure 10.)

Figure 12a shows the variation of the stroboscopic plots of the roll angle ¿ (t0 +
k2 º =« ), k = 0; 1; 2; : : : ; 30. The corresponding Lyapunov exponents are shown in
 gure 12b. In  gure 12a; b, A1 is increased from 0 to 0.8, and there are mainly
two bifurcation points at A1 = 0:14 and 0.37. These two  gure parts indicate that
chaotic responses with the positive Lyapunov exponent can be found for A1 > 0:37.
Figure 12c shows the variation of ¿ at the  xed point of the period-1 solution and
its stability with A1. The stable and unstable  xed points are connected by the solid
and dotted lines, respectively. The  xed point and its stability can be obtained using
the Poincaŕe mapping T , de ned by

T : u(t = t0) = u0 7! u(t = t0 + 2 º =« ): (4.1)

The period-N solutions satisfy the  xed-point condition T N (u0) = u0, with
T k(u0) 6= u0 for k = 1; 2; : : : ; N ¡ 1. The eigenvalues of @T N =u0 determine the
stability of the periodic solutions and topological properties including the type of
bifurcation. Figure 12c shows the hysteresis phenomenon for 0:0 < A1 < 0:2, where
the two stable period-1 solutions coexist between the two saddle-node (fold) bifur-
cation points G1 at A1 = 0:03 and 0.14. Thus, when A1 is decreased from 0.2 to 0,
the period-1 solution disappears at A1 = 0:03. The period-1 solution for A1 > 0:3
is destabilized at A1 ’ 0:37 and transits to a quasi-periodic solution because of
the Neimark{Sacker bifurcation. These results correspond to the bifurcation along
( « ; A1) = (3.5, 0.0{0.8) in  gure 11b. It should be noted that if quasi-periodic solu-
tions do exist, then they seem to exist in the very limited regions of A1, and that
the chaotic solution is found in the wide regions.

Figure 13 displays an attractor of a chaotic solution, which corresponds to A1 = 0:6
in  gure 12 ( » = 0:1 and A0 = 1:0). This attractor is reconstructed using the delay
coordinates ( ¿ (t); ¿ (t + ½ ); ¿ (t + 2½ )) with ½ = 1

4
(2 º =« ). The geometrical structure

of this attractor is similar to that of the experimental results in  gure 2.
The next step is to investigate the mechanism of these nonlinear phenomena,

including the generation of chaos. The dynamical structure of a low-dimensional
system such as the Du¯ ng equation has been considered in detail. For example,
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Thompson (1989, 1997) thoroughly examined it for roll motion of a ship in waves.
On the other hand, a coupled system such as the present model can produce more
complicated phenomena than a single system. It is well known that the single Du¬-
ing system cannot give the Neimark{Sacker bifurcation, which yields quasi-periodic
solutions, but the coupled Du¯ ng systems can (Kawakami 1984; Thompson & de
Souza 1996). Although the intricate dynamical structure of the coupled system has
not been fully elucidated, bifurcation analyses may help us understand it in a system-
atic way. For periodic solutions in this type of system, there are three general types
of the codimension-one bifurcation, namely, the saddle-node, the period-doubling
and the Neimark{Sacker bifurcation. In such a high-dimensional system, two of the
codimension-one bifurcations can easily occur at the same parameter values, just like
the point `a’ in  gure 10b. This codimension-two bifurcation occurs not in a wide
region, but at some points in the parameter space. Yoshinaga & Kawakami (1989)
showed some numerical solutions which imply a complicated structure of solutions
and a new type of route from periodic solutions to chaos near the codimension-two
bifurcation point, using a mathematical model for a coupled electrical circuit. Fig-
ure 14a shows the bifurcation curves of the period-2 and -4 solutions near the point
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`a’ in  gure 10b, at which both the saddle-node and the period-doubling bifurcations
simultaneously occur. This  gure includes the bifurcation curves 0D2 (pink) and 1I2

(cyan) of the unstable period-2 solution. We can see another codimension-two bifur-
cation point `b’ of the period-4 solution. Figure 14b shows bifurcation of the period-4
and -8 solutions near the point `b’ in  gure 14a. It should be noted that a chain of the
codimension-two bifurcation points of the period-2, -4, and -8 solutions is found in
 gure 14. With this chain, the accumulation of the saddle-node, the period-doubling
and the Neimark{Sacker bifurcations can occur. This route to chaos is not found in
a single system of the Du¯ ng equation. The wave-exciting moment A1 in  gure 14 is
larger than that in  gure 13, but there are some other codimension-two bifurcation
points in  gure 11 at the smaller values of A1. Thus this type of bifurcation may
be related to the generation of chaos in this coupled system. Further bifurcation
analyses are required for full elucidation of this intricate structure, which we could
not catch in previous experimental work.

5. Conclusions

We have considered the nonlinear roll motion of a ®ooded ship in regular waves, by
nonlinear time-series analyses of the experimental results and bifurcation analyses of
the mathematical model.

In previous work (Murashige & Aihara 1998b), the experiments demonstrated that
a ®ooded ship can exhibit complicated irregular roll motion in regular waves. The
present results of the fractal dimension and the Lyapunov exponents of the exper-
imental data indicate that they have chaotic characteristics. In addition, the RBF
network obtained directly from the data reproduces the geometrical structure of the
reconstructed attractor and provides good short-term prediction on the dynamical
motion.
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We have also simpli ed the mathematical model used in previous work (Murashige
et al . 1999), in order to avoid some troubles for bifurcation analyses in the original
model. This model can be classi ed into a coupled system of two Du¯ ng’s equations
with the bistable restoring term and the nonlinear inertia coe¯ cients. We obtained
some bifurcation diagrams using the simpli ed model, and found that it can produce
chaotic responses in the wide regions of the parameter space even if the wave-exciting
moment is not large. Furthermore, the attractor of the chaotic solution is geometri-
cally similar to that of the measured chaotic motion in the experiments. The results
suggest that further bifurcation analyses using this model may lead us to fully under-
stand the complex nonlinear responses of a ®ooded ship in waves.

The authors thank the Ship Research Institute, Ministry of Transport, Japan, for help with
experiments, Dr Motomasa Komuro of Teikyo University of Science and Technology, Dr Hiroshi
Kawakami, Dr Tetsuya Yoshinaga and Dr Tetsushi Ueta of the University of Tokushima for
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